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CONDITIONS ON THE LINE OF CONTACT OF THREE MEDIA* 

1u.z. POVSTENKO 

The paper deals with the derivation of general conditions obtaining at the line of 
contact between three media, a solid, liquid and gas, and uses these conditions to 
describe the capillary phenomena. A generalized Young's equation is obtainedtaking 
into account the tensor character of the surface stresses, linear tension in the 
wetting perimeter and the rate of displacement of the line of contact along the sur- 
face of the solid. The general conditions at the surfaces of strong shocks were 
derived in /l/ without concretizing the surface distribution of the physical para- 
meters. Assigning the specific physical and mechanical characteristics (density, 
energy, elastic or viscosity properties, etc.) to the interface boundary separating 
two media, leads to the possibility of describing surface phenomena in terms of the 
conditions at the shocks /2,6/. In the course of constructing the mathematical 
models, linear objects with linear densities of various parameters were also con- 
sidered. For example, the edge energy of crystals in /7/, energy of the wetting 
perimeter in /8/, linear density of the "string" in /9/, etc. The purpose of this 
paper is to obtain the general conditions at the line of contact between threemedia 
and to use them to describe the capillary phenomena. 

1. Balancing equations. We shall denote the quantities referring to the three phases 
in contact with each other, i.e. the solid, liquid and gaseous phase, by the indices 1, 2 and 
3. The double indices will denote the corresponding interfaces, and the lines of contact (wet- 
ting perimeters) will carry the index 0. We shall use the following notation for brevity: 

Fig.1 

The following equations of mass balance (1.11, momentum (1.2), 
total energy (1.3) and entropy (1.4) hold for the material 
volume depicted in Fig.1: 
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Here p is density, v is velocity, F is the external mass forcesdensity, n is the three-dimens- 
ional stress tensor, (I is the two-dimensional stress tensor, cD is the linear tension u and 
s are the densities of internal energy and entropy, E = l/&' + U, g is the heat flux, q is 

work done by entropy, T is absolute temperature, r is time, n in the outward normal to the 
surface, Nij is the outward normal to the contour Lij tangent to the corresponding surface 
and 1 is the tangent to the wetting perimeter. The plus and minus indices denote the values 
of the quantities at the points A and B respectively (see Fig.1). 

Passing to the limit by means of contracting the volume to a point on the line L,is an- 
alogous to the passage to the limit in the course of obtaining the conditions at a shock sur- 
face /1,4/, and leads to the following equations: 
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where Nij" is the inward normal to L,, tangent to the surfaces Sij, i<j. Equations (1.6) and 
(1.7) yield the internal energy balance 
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2. Principle of local equilibrium. The principle of local equilibrium was used in 
"two-dimensional" form in many papers in the studies of surface phenomena in continuous media 
e.g. /4,5,10/. In what follows, we shall postulate the validity of the "one-dimensional" rela- 
tion 

drc, = T&, + y&(1/l-'& yo = co - co* (2.1) 

where co* is the viscous component of the linear tension. Using the principle of local equili- 
brium, we can obtain the following expression for the appearance of entropy: 
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In the present paper we shall not write out the complete system of linear phenomenological 
relations between the thermodynamic forces and flows, instead we shall adopt the simplest 
relationships 

90 = - hllV"T0 (2.3) 

(Jo * = &VO.vO (2.4) 
where h, is the heat conductivity coefficient and 50 is the viscosity coefficient. Using the 
formulas (2.1) and (2.4), we can write the equations of state 

(2.5) 

Using the Maxwell relations connecting the thermodynamic potentials /ll/ and the formulas (1.8), 
(2.3), we arrive to the generalized equation of heat conductivity 
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where c, is the heat capacity, B. is the isothermal modulus of linear elasticity and p,, is 
the isobaric coefficient of linear expansion. In this manner we have obtained the equations 
of continuity (1.5), motion (1.6), state (2.5) and heat conductivity (2.6) for a linearobject 
modelling the region of contact of three media (wetting perimeter). 

3. Connection with the Young's equation. The best known relations of the theory 
of capillar phenomena are the Laplace equation /12j and the Young's equation /13/ (in the 
notation adopted here) 

ZHa,, = - n.(aq - JIJ.~, uz3 cos 8 = u13-u12 (3.1) 

Here Uij denote the surface tensions, H is the mean surface curvature and El is the edge angle 
(angle between N,,O and NtsO). The effect of the linear tension u. on the edge angle under the 
conditions of axial symmetry was taken into account in /8,14/: 

u'23 cos e = UIS - u12 - (u. cos cp)/R (3.2) 

where i? is the radius of the base of the liquid drop and 'p is the angle of inclination of the 
surface Sls at the line of three-phase contact (the case 'p = Cl was dealt with in /8/J. 

At present it is generally accepted that for the solid body surfaces the tensors u12 and 

013 cannot, in general, be reduced to the scalar surface tensions (J12 and srs. The corres- 
ponding generalization of the Laplace formula (first formula of (3.1)) is known and given in 
/10,15/. The equation (1.6) represents a generalization of the Young's equation (second form- 
ula of (3.1)). In the case mij = 0, N,zo = -N,, O-t we project the equation (1.6) onto - the 
coordinate axes t,l and n. Taking the Serret-Frenet formula /16/ into account, we obtain 

P0a0' = poFo' + q21' - UISl' + u2* cos e + (Jo x cos cp (3.3) 
poao' = polo' + u121' - ul:' + duo/d2 

pOaOn = poPon + uzs sin 8 - u. x sin m 

Here Cp is the angle between the principal normal to the wetting perimeter and the t -axis, x 
is the curvature of the line of contact, and a, = dvoldz. We assume in (3.3) that on the 

surface Szs the surface stress tensor s2, can be reduced to surface tension uz3, i.e. that 
the surface viscosity effects can be neglected. 

A drop lying on a plane surface or spreading along it, may deviate fromits axial symmetry 
by virtue of the tensor character of um and 01s * The linear tension gradient allows US 

to describe the known, Marangoni-type effects, connected with the surface tension gradient. 

4. Possible applications of the theory. The results obtained above sharpen the 
conditions of equilibrium between thin films and volume phases /17,18/, and between two-dimen- 
sional phases /19,20/. They can be used to develop further the theory of seedingthe condensed 

phase j21/ and the capillary theory of flotation /22/ based on the analysis of the situa- 
tion prevailing at the line separating three media, using the concept of linear tension. At 
present there exists a large amount of accumulated experimental material relating to the 
dependence of the wetting angle on the rate of motion of the perimeter, and concerning, in 
particular, the "advancing" and "receding" edge angles. In the survey /23/ of experimentsand 
suggested mechanisms the need for seeking new representations is manifest. The dynamic 

characteristics entering the equation (1.6) describe only one of such mechanisms. 
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